Треугольник

Треугольник – это многоугольник с тремя сторонами (тремя углами).

Виды треугольников:

Остроугольный треугольник – треугольник, у которого все углы острые (то есть меньше 90°).

Тупоугольный треугольник – треугольник, у которого один из углов тупой (больше 90°).

Прямоугольный треугольник – треугольник, у которого один из углов прямой (равен 90°).

Равнобедренным называется треугольник, у которого две стороны равны. Эти стороны называются **боковыми**, третья сторона называется **основанием**.

Равносторонний (правильный) треугольник – треугольник, у которого все три стороны равны.

Свойства треугольника

- 1. Против большей стороны лежит больший угол, и наоборот.
- 2. Против равных сторон лежат равные углы, и наоборот.
- **3.** Сумма углов треугольника равна 180 °.
- **4.** Внешний угол треугольника равен сумме внутренних углов, не смежных с ним: (Внешний угол образуется в результате продолжения одной из сторон треугольника).
- 5. Любая сторона треугольника меньше суммы двух других сторон.

Линии в треугольнике

Высотой треугольника называют перпендикуляр, опущенный из вершины треугольника на прямую, содержащую противолежащую сторону треугольника.

Медианой треугольника называют отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Свойства:

- 1. Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении *2:1, считая от вершины*.
- 2. Медиана, проведенная к гипотенузе прямоугольного треугольника, *равна* половине гипотенузы.

Биссектриса треугольника — отрезок, соединяющий вершину угла треугольника с точкой противоположной стороны и делящий этот угол пополам.

Свойства:

- 1. Биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам треугольника.
- 2. Точки биссектрисы угла треугольника равноудалены от сторон этого угла.
- з. Биссектрисы внутренних углов треугольника пересекаются в одной точке центре вписанной в этот треугольник окружности.

Средняя линия треугольника – отрезок, соединяющий середины двух сторон треугольника.

Свойство:

Средняя линия треугольника параллельна третьей стороне и равна ее половине.

Признаки подобия треугольников

І признак подобия треугольников

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

II признак подобия треугольников

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

III признак подобия треугольников

Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

Свойства подобных треугольников

Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Отношение периметров подобных треугольников равно коэффициенту подобия.

Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.

Признаки равенства треугольников

- **1.** Треугольники равны, если у них соответственно равны две стороны и угол между ними.
- **2.** Треугольники равны, если у них соответственно равны два угла и прилегающая к ним сторона.
- **3.** Треугольники равны, если у них соответственно равны три стороны.

Прямоугольный треугольник. Если один из углов треугольника прямой, то треугольник называется прямоугольным. В прямоугольном треугольнике сторона, лежащая против прямого угла называется гипотенузой, а две другие стороны называются катетами этого треугольника.

Обозначим через c гипотенузу AB прямоугольного треугольника ABC, через a_c и b_c — проекции катетов a и b на гипотенузу AB, а через h_c — высоту, проведенную из вершины прямого угла C этого треугольника. Тогда имеют место следующие соотношения:

$$a^{2}+b^{2}=c^{2},$$

$$a_{c}=\frac{a^{2}}{c}, \qquad b_{c}=\frac{b^{2}}{c}, \qquad h_{c}=\frac{ab}{c}, \qquad h_{c}=\sqrt{a_{c}b_{c}},$$

$$\sin A=\frac{a}{c}, \qquad \cos A=\frac{b}{c}, \qquad \operatorname{tg} A=\frac{a}{b}, \qquad \operatorname{ctg} A=\frac{b}{a}.$$

Основное тригонометрическое тождество и следствия из него:

$$\sin^2 \alpha + \cos^2 \alpha = 1$$
, $1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$, $1 + ctg^2 \alpha = \frac{1}{\sin^2 \alpha}$.

Равносторонний треугольник. Треугольник, все три стороны которого равны, называется правильным (равносторонним) треугольником.

Пусть a, h, S, R, r — соответственно длина стороны, высота, площадь, радиус описанной и радиус вписанной окружности правильного треугольника. Тогда имеют место следующие соотношения:

$$h = \frac{a\sqrt{3}}{2}$$
, $S = \frac{a^2\sqrt{3}}{4}$, $R = \frac{a}{\sqrt{3}}$, $r = \frac{a}{2\sqrt{3}}$, $r = \frac{1}{3}h$, $R = \frac{2}{3}h$, $R = 2r$, $r + R = h$.

Соотношение сторон в треугольнике

Теорема синусов

Во всяком треугольнике стороны относятся как синусы противолежащих углов:

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R,$$

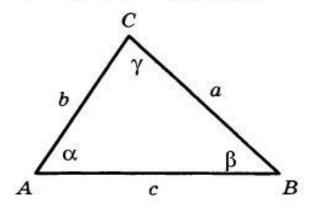
где R — радиус окружности, описанной около треугольника.

Теорема косинусов

Квадрат одной из сторон треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними:

$$a^2 = b^2 + c^2 - 2bc \cos \alpha,$$

 $b^2 = c^2 + a^2 - 2ca \cos \beta,$
 $c^2 = a^2 + b^2 - 2ab \cos \gamma.$



Площадь треугольника

Половина произведения основания на высоту

$$S=\frac{1}{2}ah$$

Половина произведения сторон на синус угла между ними

$$S = \frac{1}{2}ab\sin y$$

Формула Герона. Корень из произведения разностей полупериметра треугольника (р) и каждой из его сторон

$$S = \sqrt{p(p-a)(p-b)(p-c)},$$
$$p = \frac{1}{2}(a+b+c)$$

Полупериметр на радиус вписанной окружности

$$S = pr$$

Произведение трех сторон на четыре радиуса описанной окружности

$$S = \frac{abc}{4R}$$

Параллелограмм

Параллелограмм – четырехугольник, у которого противоположные стороны попарно параллельны.

Частные случаи параллелограмма: ромб, прямоугольник, квадрат.

Свойства:

- 1. Противоположные стороны параллелограмма попарно равны.
- 2. Противоположные углы параллелограмма попарно равны.
- 3. Сумма смежных (соседних) углов параллелограмма равна 180 градусов.
- **4.** Сумма всех углов равна 360°.
- **5.** Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.

Признаки параллелограмма

Четырехугольник *ABCD* **является параллелограммом, если** выполняется хотя бы одно из следующих условий:

1. Противоположные стороны попарно равны:

$$AB = CD, BC = AD$$

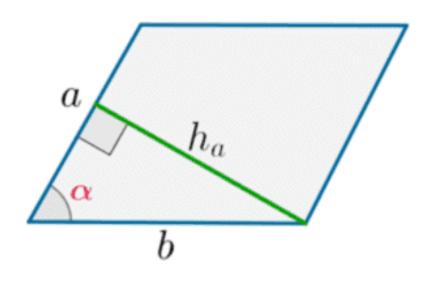
2. Противоположные углы попарно равны:

$$\angle A = \angle C, \ \angle B = \angle D$$

- Диагонали пересекаются и в точке пересечения делятся пополам
- 4. Противоположные стороны равны и параллельны:

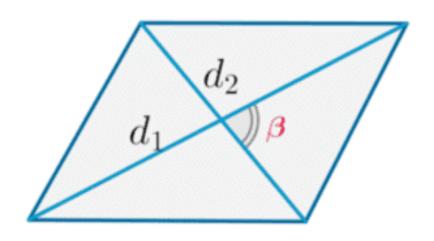
$$AB = CD, AB||CD$$

Площадь параллелограмма



1.
$$S = a \cdot h_a$$

2.
$$S = ab \cdot \sin \alpha$$



$$3. S = \frac{1}{2}d_1d_2 \cdot \sin \beta$$

Прямоугольник

Прямоугольник — параллелограмм, у которого все углы прямые.

Частным случаем прямоугольника является квадрат.

Свойства:

- **1.** Так как прямоугольник это параллелограмм, то все свойства параллелограмма верны и для прямоугольника.
- 2. Стороны прямоугольника являются его высотами.
- Диагонали прямоугольника равны.
- **4.** Квадрат диагонали прямоугольника равен сумме квадратов двух его соседних сторон.
- **5.** Около любого прямоугольника можно описать окружность, при этом диагональ прямоугольника равна диаметру описанной окружности.

Признаки прямоугольника

Параллелограмм является прямоугольником, если выполняется любое из условий:

- 1. Диагонали параллелограмма равны.
- **2.** Квадрат диагонали параллелограмма равен сумме квадратов соседних сторон.
- 3. Все углы параллелограмма равны.

Площадь прямоугольника

1. Формула площади прямоугольника через две стороны:

$$S = a \cdot b$$

2. Формула площади прямоугольника через периметр и любую сторону:

$$S = \frac{Pa - 2a^2}{2} = \frac{Pb - 2b^2}{2}$$

3. Формула площади прямоугольника через диагональ и любую сторону:

$$S = a\sqrt{d^2 - a^2} = b\sqrt{d^2 - b^2}$$

 Формула площади прямоугольника через диагональ и синус острого угла между диагоналями:

$$S = \frac{d^2 \cdot \sin\beta}{2}$$

Ромб

Ромб – это параллелограмм, у которого все стороны равны.

Если у ромба – прямые углы, то он называется квадратом.

Свойства:

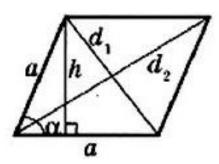
- **1.** Поскольку ромб это параллелограмм, то все свойства параллелограмма верны для ромба.
- 2. Диагонали ромба перпендикулярны.
- 3. Диагонали ромба являются биссектрисами его углов.
- 4. Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4.

Признаки ромба

Чтобы параллелограмм являлся ромбом, необходимо выполнение одного из следующих условий:

- **1.** Все стороны параллелограмма равны между собой.
- 2. Диагонали пересекаются под прямым углом.
- 3. Диагонали параллелограмма являются биссектрисами его углов.

Площадь ромба



• произведению сторон и высоты ромба.

$$S = ah$$
.

• произведению квадрата его стороны на синус угла ромба.

 $S = a^2 \sin \alpha$.

• половине произведения его диагоналей.

$$S=\frac{1}{2}d_1d_2.$$

 удвоенному произведению стороны на радиус окруж ности, вписанной в ромб.

$$S = 2ar$$
.

Квадрат

Квадрат – ромб, у которого все углы прямые.

ИЛИ

Квадрат – прямоугольник с равными сторонами.

ИЛИ

Квадрат – параллелограмм, у которого все стороны равны и все углы равны.

Свойства:

Все свойства параллелограмма, ромба, прямоугольника верны для квадрата.

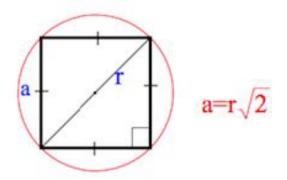
Признаки квадрата

Четырехугольник будет являться квадратом, если выполняется хотя бы одно из условий:

- 1. Все стороны равны и среди внутренних углов есть прямой угол.
- 2. Диагонали равны, перпендикулярны и, пересекаясь, делятся пополам.
- **3.** Четырехугольник обладает поворотной симметрией: он не изменится при повороте на 90°.

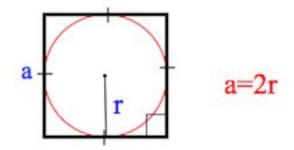
Описанная окружность

Около квадрата можно описать окружность. Сторона a и радиус r окружности связаны соотношением: $a = r\sqrt{2}$.



Вписанная окружность

В квадрат можно вписать окружность. Радиус вписанной окружности r и сторона квадрата связаны соотношением: a=2r.



Площадь квадрата

1. Формула площади квадрата через сторону квадрата:

$$S = a^2$$

2. Формула площади квадрата через периметр квадрата:

$$S=\frac{p^2}{16}$$

3. Формула площади квадрата через диагональ квадрата:

$$S=\frac{d^2}{2}$$

4. Формула площади квадрата через радиус описанной окружности:

$$S=2R^2$$

5. Формула площади квадрата через радиус вписанной окружности:

$$S=4r^2$$

Трапеция

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны. Если боковые стороны равны, трапеция называется **равнобедренной**.

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной.

Отрезок, соединяющий середины боковых сторон, называется **средней линией трапеции**.

Свойства:

- 1. Средняя линия трапеции параллельна основаниям и равна их полусумме.
- 2. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.
- 3. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

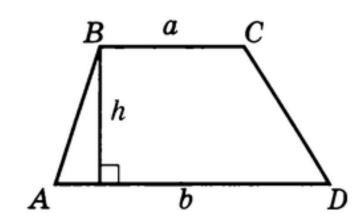
Свойства и признаки равнобедренной трапеции

- 1. В равнобедренной трапеции углы при любом основании равны.
- 2. В равнобедренной трапеции длины диагоналей равны.
- 3. Если трапецию можно вписать в окружность, то трапеция равнобедренная.
- 4. Около равнобедренной трапеции можно описать окружность.

Площадь трапеции

Площадь трапеции равна произведению полусуммы оснований на высоту:

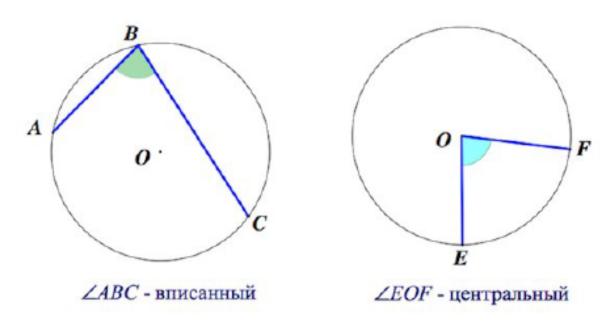
$$S_{\rm rp} = \frac{a+b}{2} \cdot h.$$



Центральные и вписанные углы

Вписанный угол – угол, вершина которого лежит на окружности, а обе стороны пересекают эту окружность.

Центральный угол — угол с вершиной в центре окружности. *Центральный угол равен градусной мере дуги, на которую опирается*.



Свойства вписанных углов

- 1. Вписанный угол измеряется половиной дуги, на которую он опирается.
- 2. Вписанные углы, опирающиеся на одну и ту же дугу, равны.
- 3. Вписанный угол, опирающийся на полуокружность, прямой.
- 4. Отношение хорды к синусу вписанного угла, который на нее опирается, равно двум радиусам (теорема синусов).

Хорда, касательная, секущая

Хорда – отрезок, соединяющий две точки окружности.

В частности, хорда, проходящая через центр окружности, называется диаметром.

Касательная к окружности — прямая, имеющая с окружностью единственную общую точку.

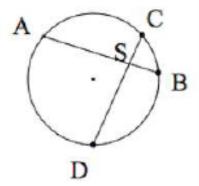
Секущей к окружности называется прямая, которая пересекает окружность в двух различных точках.

Свойства:

1. Радиус, проведенный в точку касания, перпендикулярен касательной.

2. Отрезки касательных, проведенных к окружности из одной точки, равны.

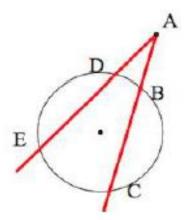
3.



Отрезки пересекающихся хорд связаны соотношением:

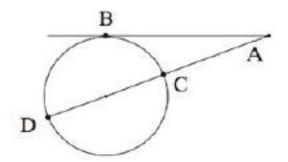
$$AS \cdot SB = CS \cdot DS$$

4.



Произведения отрезков секущих, проведенных из одной точки, равны: $AB \cdot AC = AD \cdot AE$

5.



Квадрат отрезка касательной равен произведению отрезков секущей, проведенной из той же точки:

$$AB^2 = AC \cdot AD$$

Вписанная окружность

Окружность называется *вписанной* в многоугольник, если все стороны многоугольника касаются этой окружности. Многоугольник в этом случае называется *описанным* около окружности.

Центр окружности, вписанной в многоугольник, есть точка, равноудаленная от всех сторон этого многоугольника, — точка пересечения биссектрис углов этого многоугольника. В многоугольник можно вписать окружность и притом только одну, тогда и только тогда, когда биссектрисы его углов пересекаются в одной точке.

В любой треугольник можно вписать окружность.

В правильный многоугольник можно вписать окружность.

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны.

Если окружность радиуса r вписана в многоугольник, площадь которого равна S, а полупериметр равен p, то имеет место соотношение S=pr: площадь описанного многоугольника равна произведению полупериметра на радиус вписанной окружности.

Описанная окружность

Окружность называется *описанной* вокруг многоугольника, если все вершины многоугольника принадлежат этой окружности. Многоугольник в этом случае называется *вписанным* в окружность.

Центр окружности, описанной вокруг многоугольника, есть точка, равноудаленная от всех вершин этого многоугольника, — точка пересечения серединных перпендикуляров к сторонам этого многоугольника.

Около многоугольника можно описать окружность и притом только одну, тогда и только тогда, когда серединные перпендикуляры к сторонам этого многоугольника пересекаются в одной точке.

Около любого треугольника можно описать окружность. Радиус описанной окружности равен отношению половины стороны к синусу противолежащего угла: $R = \frac{a}{2 \sin \alpha} \,.$

Около четырехугольника можно описать окружность тогда и только тогда, когда суммы его противоположных углов равны.

Около трапеции можно описать окружность тогда и только тогда, когда эта трапеция равнобедренная.

Соотношения между элементами окружности и круга

Пусть r — радиус окружности, d — ее диаметр, C — длина окружности, S — площадь круга, l_{n^0} — длина дуги в n градусов, l_{α} — длина дуги в α радиан, S_{n^0} — площадь сектора, ограниченного дугой в n градусов, S_{α} — площадь сектора, ограниченного дугой в α радиан. Тогда имеют место следующие соотношения:

$$C=2\pi r$$
,

$$S = \pi r^2$$
.

$$l_{n^{\circ}} = \pi r \frac{n}{180},$$

$$l_{\alpha} = r\alpha$$
,

$$S_{n^{\circ}} = \pi r^2 \frac{n}{360},$$

$$S_{\alpha} = \frac{1}{2}r^2\alpha$$
.