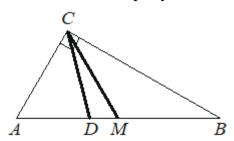
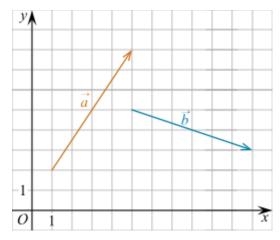
Часть 1

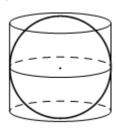
1. Острый угол B прямоугольного треугольника ABC равен 21° . Найдите величину угла между биссектрисой CD и медианой CM, проведёнными из вершины прямого угла C. Ответ дайте в градусах.



2. На координатной плоскости изображены векторы \vec{a} и \vec{b} . Найдите скалярное произведение $\vec{a} \cdot \vec{b}$.



3. Шар, объём которого равен 18, вписан в цилиндр. Найдите объём цилиндра.



- **4.** Симметричную монету бросают три раза. Найдите вероятность того, что орел не выпадет ни разу.
- **5.** В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.
- 6. Найдите корень уравнения

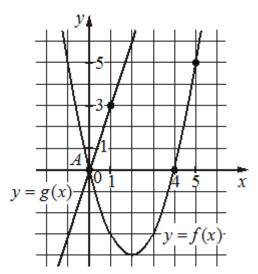
$$\left(\frac{1}{4}\right)^{x-15} = \frac{1}{64}.$$

1

7. Найдите значение выражения

$$\frac{\log_9 28}{\log_9 7} + \log_7 \frac{7}{4}.$$

- **8.** Прямая y = 3x + 1 является касательной к графику функции $f(x) = ax^2 + 2x + 3$. Найдите a.
- **9.** Высота над землёй подброшенного вверх мяча меняется по закону $h(t) = 1.4 + 1.4t 5t^2$, где h высота в метрах, t время в секундах, прошедшее с момента броска. Сколько секунд мяч будет находиться на высоте не менее 8 метров?
- **10.** Первая труба пропускает на 4 литра воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 285 литров она заполняет на 4 минуты дольше, чем вторая труба?
- **11.** На рисунке изображены графики функций видов $f(x) = ax^2 + bx + c$ и g(x) = kx, пересекающиеся в точках A и B. Найдите абсциссу точки B.



12. Найдите наибольшее значение функции $y = 7\cos x + 14x - 9$ на отрезке $\left[-\frac{3\pi}{2}; 0\right]$.

Часть 2

13. а) Решите уравнение

$$8\sin^2 x - 2\sqrt{3}\cos\left(\frac{\pi}{2} - x\right) - 9 = 0.$$

- б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$.
- **14.** Ребро *SA* пирамиды *SABC* перпендикулярно плоскости основания *ABC*.
- а) Докажите, что высота пирамиды, проведённая из точки A, делится плоскостью, проходящей через середины рёбер AB, AC и SA, пополам.
- б) Найдите расстояние от вершины A до этой плоскости, если $SA = \sqrt{5}$, AB = AC = 5, $BC = 2\sqrt{5}$.

2

15. Решите неравенство

$$\frac{5^x}{5^x - 4} + \frac{5^x + 5}{5^x - 5} + \frac{22}{25^x - 9 \cdot 5^x + 20} \le 0.$$

- **16.** В июле планируется взять кредит в банке на сумму 13 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы:
- каждый январь долг возрастает на 20% по сравнению с концом предыдущего года;
- с февраля по июнь каждого года необходимо выплатить часть долга;
- в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.

Чему будет равна общая сумма выплат после полного погашения кредита, если наименьший годовой платёж составит 1,56 млн рублей?

- **17.** Дана равнобедренная трапеция ABCD, в которой AD = 3BC, CM- высота трапеции.
- а) Доказать, что M делит AD в отношении 2:1.
- б) Найдите расстояние от точки C до середины BD, если AD = 18, $AC = 4\sqrt{13}$.
- **18.** Найдите все значения параметра a, при каждом из которых уравнение

$$|x^2 - a^2| = |x + a| \cdot \sqrt{x^2 - 4ax + 5a}$$

имеет ровно один корень.

- **19.** В последовательности из 80 целых чисел каждое число (кроме первого и последнего) больше среднего арифметического соседних чисел. Первый и последний члены последовательности равны 0.
- а) Может ли второй член такой последовательности быть отрицательным?
- б) Может ли второй член такой последовательности быть равным 20?
- в) Найдите наименьшее значение второго члена такой последовательности.

3

Ответы к заданиям 1-12

№ задания	1	2	3	4	5	6	7	8	9	10	11	12
ответ	24	12	27	0,125	0,9975	18	2	0,125	0	15	7	-2

- а) Решите уравнение $8 \sin^2 x 2\sqrt{3} \cos \left(\frac{\pi}{2} x\right) 9 = 0$.
- б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$.

Содержание критерия			
Обоснованно получены верные ответы в обоих пунктах	2		
Обоснованно получен верный ответ в пункте а			
ИЛИ			
получены неверные ответы из-за (одной) вычислительной ошибки, но	1		
при этом имеется верная последовательность всех шагов решения			
обоих пунктов			
Решение не соответствует ни одному из критериев, перечисленных	0		
выше	U		

Решение. а) Учитывая формулы приведения, перепишем

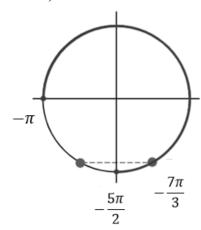
$$8\sin^2 x - 2\sqrt{3}\sin x - 9 = 0.$$

Замена переменной: $t = \sin x$, $|t| \le 1$. Уравнение принимает вид

$$8t^2 - 2\sqrt{3}t - 9 = 0; \ t_1 = \frac{3\sqrt{3}}{4} > 1$$
 (посторонний корень), $t_2 = -\frac{\sqrt{3}}{2}$.

Обратная замена:
$$\sin x = -\frac{\sqrt{3}}{2}; \; \begin{bmatrix} x = -\frac{\pi}{3} + 2\pi k, k \in \mathbf{Z}, \\ x = \frac{4\pi}{3} + 2\pi n, n \in \mathbf{Z}. \end{bmatrix}$$

б) Отбор корней, принадлежащих отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$, выполним с помощью числовой окружности (на окружности выделена дуга; отмечены точки; точки надписаны значениями, которые пойдут в ответ пункта δ). (Существуют другие способы отбора корней: графический; с недолётом и перелётом; решение неравенств.)



Таким образом, отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$ принадлежит единственное решение $x=-\frac{7\pi}{3}$.

Omsem: a)
$$x = -\frac{\pi}{3} + 2\pi k$$
, $k \in \mathbb{Z}$; $x = \frac{4\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$, 6) $-\frac{7\pi}{3}$.

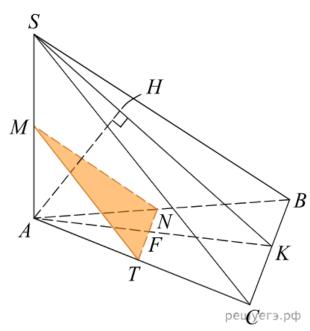
Ребро SA пирамиды SABC перпендикулярно плоскости основания ABC.

- а) Докажите, что высота пирамиды, проведённая из точки A, делится плоскостью, проходящей через середины рёбер AB, AC и SA, пополам.
- б) Найдите расстояние от вершины A до этой плоскости, если $SA = \sqrt{5}$, AB = AC = 5, $BC = 2\sqrt{5}$.

Критерии оценивания выполнения задания	Баллы
Имеется верное доказательство утверждения пункта а) и обоснованно получен верный ответ в пункте б)	3
Получен обоснованный ответ в пункте б) ИЛИ имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки	2
Имеется верное доказательство утверждения пункта а) ИЛИ при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, ИЛИ обоснованно получен верный ответ в пункте б) с использованием утверждения пункта а), при этом пункт а) не выполнен	1
Решение не соответствует ни одному из критериев, приведённых выше	0
<i>Максимальный балл</i> еде.	sdam g ia.ru

Решение.

а) Пусть AH — искомая высота. Проведем прямую SH, обозначим K точку пересечения прямой SH со стороной основания BC. Проведем прямую AK. Точки T и N — середины сторон AC и AB, поэтому отрезок TN — средняя линия треугольника ABC. Следовательно, TN делит отрезок AK на две равные части. Поэтому MF — средняя линия треугольника SKA, она делит AH на две равные части.



б) По условию, AB = AC, поэтому треугольник ABC — равнобедренный. Поскольку SC = SB, треугольник SCB тоже равнобедренный. Ребро SA перпендикулярно плоскости основания пирамиды, поэтому оно перпендикулярно и стороне основания AB. Тогда прямо-угольные треугольники SAC и SAB равны по двум катетам.

Так как AC = AB, $AH \perp (CBS)$, следовательно, $HC \perp AH$, $AH \perp HB$, тогда HC = HB. Значит, точка H принадлежит серединному перпендикуляру к CB, то есть SK, так как SK — медиана, высота и биссектриса равнобедренного треугольника. Тогда $CK = \sqrt{5}$, AK — биссектриса, медиана и высота равнобедренного треугольника ABC. По теореме Пифагора $AK = 2\sqrt{5}$.

Поскольку $SA \perp (ABC)$, $SA \perp AK$. Тогда по теореме Пифагора SK = 5. Далее, $SA^2 = SK \cdot SH$, то есть SH = 1, следовательно, из треугольника SAH по теореме Пифагора AH = 2. Тогда искомое расстояние равно 1.

Ответ: б) 1.

Задание 15

Решите неравенство
$$\frac{5^x}{5^x-4} + \frac{5^x+5}{5^x-5} + \frac{22}{25^x-9\cdot5^x+20} \le 0.$$

Содержание критерия		
Обоснованно получен верный ответ		
Обоснованно получен ответ, отличающийся от верного исключением точки 0, ИЛИ получен неверный ответ из-за вычислительной ощибки, но при этом имеется верная последовательность всех шагов решения	1	
Решение не соответствует ни одному из критериев, перечисленных выше	O	
Максимальный балл	2	

Решение.

Пусть $t = 5^x$, тогда неравенство примет вид:

$$\frac{t}{t-4} + \frac{t+5}{t-5} + \frac{22}{t^2 - 9t + 20} \le 0; \quad \frac{2t^2 - 4t + 2}{t^2 - 9t + 20} \le 0; \quad \frac{2(t-1)^2}{(t-4)(t-5)} \le 0,$$

откуда t = 1; 4 < t < 5.

При k=1 получим: $5^{x}=1$, откуда x=0.

При 4 < t < 5 получим: $4 < 5^x < 5$, откуда $\log_5 4 < x < 1$.

Решение исходного неравенства: x = 0; $\log_5 4 < x < 1$.

OrBer: 0; (log, 4; 1).

В июле планируется взять кредит в банке на сумму 13 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы:

- каждый январь долг возрастает на 20% по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить часть долга;
- в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.

Чему будет равна общая сумма выплат после полного погашения кредита, если наименьший годовой платёж составит 1,56 млн рублей?

Содержание критерия		
Обоснованно получен верный ответ	2	
Верно построена математическая модель	1	
Решение не соответствует ни одному из критериев, перечисленных выше	0	
Максимальный балл	2	

Решение. Предположим, что кредит взят на n лет. Погашение кредита идёт так, что в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года, то есть каждый раз уменьшаться на $\frac{13}{n}$ млн рублей.

Ежегодные выплаты представляют собой сумму двух величин: n-й части суммы, взятой в кредит ($\frac{13}{n}$ млн рублей), и процентов, начисленных на остаток долга. Самые маленькие выплаты будут через n лет, поскольку последний раз процент начисляется на самый маленький остаток долга ($\frac{13}{n}$ млн рублей).

Таким образом,
$$\frac{13}{n} + 0.2 \cdot \frac{13}{n} = 1.56$$
; $1.2 \cdot \frac{13}{n} = 1.56$; $\frac{n}{n} = 1.3$; $n = 10$. Учитывая сказанное, заполним таблицу.

Год	Долг после выплаты	Выплата
0	13	-
1	13.0,9	$1,3+0,2\cdot 13$
2	13.0,8	$1,3+0,2\cdot 13\cdot 0,9$
	•••	•••
9	13.0,1	$1,3+0,2\cdot 13\cdot 0,2$
10	0	$1,3 + 0,2 \cdot 13 \cdot 0,1$

Всего следует выплатить

$$13 + 0.2 \cdot 13$$
 $(1 + 0.9 + ... + 0.2 + 0.1) = 13 + 0.2 \cdot 13 \cdot 5.5 = 27.3$ (млн руб.)

Ответ: 27,3 млн руб.

Дана равнобедренная трапеция ABCD, в которой AD = 3BC, CM — высота трапеции.

- а) Доказать, что M делит AD в отношении 2:1.
- б) Найдите расстояние от точки C до середины BD, если AD = 18, $AC = 4\sqrt{13}$.

Критерии оценивания выполнения задания	Баллы
Имеется верное доказательство утверждения пункта а) и обоснованно получен верный ответ в пункте б)	3
Получен обоснованный ответ в пункте б) ИЛИ имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки	2
Имеется верное доказательство утверждения пункта а) ИЛИ при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, ИЛИ обоснованно получен верный ответ в пункте б) с использованием утверждения пункта а), при этом пункт а) не выполнен	1
Решение не соответствует ни одному из критериев, приведённых выше	0
<i>Максимальный балл</i> еде.	sdam g ia.ru

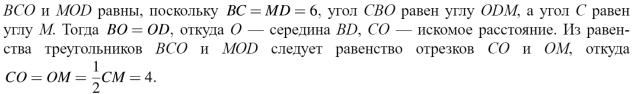
Решение.

а) Поскольку АВСО равнобедренная трапеция,

$$MD = \frac{AD - BC}{2} = \frac{3BC - BC}{2} = BC,$$

тогда AM = AD - MD = 3BC - BC = 2BC, откуда $\frac{AM}{MD} = \frac{2}{1}$.

б) В треугольнике
$$AMC$$
 угол $M = 90^{\circ}$, $AM = \frac{2}{3}AD = 12$, $CM = \sqrt{AC^2 - AM^2} = 8$. Треугольники



C

*М*решуегэ.рФ

Ответ: б) 4.

Найдите все значения параметра a, при каждом из которых уравнение

$$|x^2 - a^2| = |x + a| \cdot \sqrt{x^2 - 4ax + 5a}$$

имеет ровно один корень.

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено множество значений а,	3
отличающееся от искомого только включением точки $a = -1$.	
С помощью верного рассуждения получено множество значений a ,	2
отличающиеся от искомого только исключением точки $a = -5$,	
возможно с включением точки $a = -1$,	
ИЛИ	
с помощью верного рассуждения получено множество значений a ,	
отличающиеся от искомого только исключением точки $a = 0$,	
возможно с включением точки $a = -1$,	
ИЛИ	
получен неверный ответ из-за вычислительной ошибки, но при этом	
выполнены все шаги решения.	
Задача сведена к исследованию корней двух уравнений:	1
$x + a = 0$ при условии $x^2 - 4ax + 5a \ge 0$,	
$2ax = 5a - a^2$ при всех значениях a .	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4

Решение. Перепишем уравнение

$$|x + a| \cdot |x - a| - |x + a| \cdot \sqrt{x^2 - 4ax + 5a} = 0;$$

$$|x + a| \cdot (|x - a| - \sqrt{x^2 - 4ax + 5a}) = 0.$$

Произведение равно нулю, когда один из множителей равен нулю, а другой при этом существует. Таким образом, возможны два случая

1)
$$\begin{cases} |x+a| = 0, \\ x^2 - 4ax + 5a \ge 0 \end{cases}$$
 или 2) $|x-a| = \sqrt{x^2 - 4ax + 5a}.$

Рассмотрим оба случая.

$$1) \left\{ \begin{matrix} x=-a, \\ a^2+4a^2+5a \geq 0 \end{matrix} \right. \Rightarrow \left\{ \begin{matrix} x=-a, \\ a(a+1) \geq 0 \end{matrix} \right. \Rightarrow \left\{ \begin{matrix} x=-a, \\ a \leq -1 \text{ или } a \geq 0. \end{matrix} \right.$$

Bывод: $x_1 = -a$ – решение (1-й корень), если $a \le -1$ или $a \ge 0$.

2)
$$|x - a| = \sqrt{x^2 - 4ax + 5a}$$
.

Так обе части уравнения неотрицательны, то возводим в квадрат (посторонних корней не получим).

$$(x-a)^2 = x^2 - 4ax + 5a \implies x^2 - 2ax + a^2 = x^2 - 4ax + 5a \implies 2ax = 5a - a^2.$$

Вывод:

1. Если a = 0, то $x \in \mathbf{R}$ (решений – бесконечно много). Тогда $a \neq 0$.

2. Если
$$a \neq 0$$
, то $x_2 = \frac{5-a}{2}$ (2-й корень).

При этом корни могут совпадать. Заметим, что $x_1=x_2$, если $-a=\frac{5-a}{2}$, то есть a=-5 (на схеме – синяя точка).

$$x_1$$
 -5
 x_2
 x_3
 x_4
 x_5
 x_6
 x_7
 x_8
 x_9
 x_9

Ответ: $a \in \{-5\} \cup (-1; 0)$.

Задание 19

В последовательности из 80 целых чисел каждое число (кроме первого и последнего) больше среднего арифметического соседних чисел. Первый и последний члены последовательности равны 0.

- а) Может ли второй член такой последовательности быть отрицательным?
- б) Может ли второй член такой последовательности быть равным 20?
- в) Найдите наименьшее значение второго члена такой последовательности.

Критерии оценивания выполнения задания	Баллы			
Верно получены все перечисленные (см. критерий на 1 балл) результаты.				
Верно получены три из перечисленных (см. критерий на 1 балл) результатов.	3			
Верно получены два из перечисленных (см. критерий на 1 балл) результатов.	2			
Верно получен один из следующих результатов: — обоснованное решение в п. а; — обоснованное решение в п. б; — искомая оценка в п. в; — пример в п. в, обеспечивающий точность предыдущей оценки.	1			
Решение не соответствует ни одному из критериев, перечисленных выше.	0			
Максимальный балл	4			

Решение. Фраза «В последовательности из 80 целых чисел каждое число (кроме первого и последнего) больше среднего арифметического соседних чисел» может навести на мысль о «сравнении» данной последовательности с арифметической последовательностью.

Для арифметической последовательности a_1 ; a_2 ; ...; a_{80} характеристическим является свойство:

Последовательность чисел a_1 ; a_2 ; ...; a_{80} является арифметической последовательностью тогда и только тогда, когда для любого $n=\overline{2,79}$ выполняется равенство $a_n=\frac{a_{n-1}+a_{n+1}}{2}$.

 $a_n > \frac{a_{n-1} + a_{n+1}}{2}$.

Арифметическая последовательность имела бы вид

$$a_1$$
; $a_1 + d$; $a_1 + 2d$; ...; $a_1 + 79d$,

где d = const – разность арифметической прогрессии.

В нашем же случае последовательность имеет вид

$$a_1$$
; $a_1 + d_1$; $a_1 + d_1 + d_2$; ...; $a_1 + d_1 + d_2 + \cdots + d_{79}$,

где d_n – некоторые целые числа. Таким образом, $a_n = a_{n-1} + d_{n-1}$, $n = \overline{2,80}$.

Заметим, что неравенство $a_n > \frac{a_{n-1} + a_{n+1}}{2}$ можно переписать так

$$a_n > \frac{(a_n - d_{n-1}) + (a_n + d_n)}{2} = \frac{2a_n - d_{n-1} + d_n}{2};$$

$$2a_n > 2a_n - d_{n-1} + d_n;$$

$$d_{n-1} > d_n.$$

Bывод: в последовательности каждое число, кроме первого и последнего, больше среднего арифметического соседних чисел тогда и только тогда, когда последовательность разностей соседних членов убывает.

Замечание. Другое доказательство проводится следующим образом:

$$a_n > \frac{a_{n-1} + a_{n+1}}{2};$$

$$2a_n > a_{n-1} + a_{n+1};$$

$$a_n - a_{n-1} > a_{n+1} - a_n;$$

$$d_{n-1} > d_n.$$

Заметим также, что второй член последовательности $a_2=a_1+d_1=d_1,$ так как по условию задачи $a_1=0.$

Аналогично, так как $a_{80} = 0$, то

$$a_1 + d_1 + d_2 + \dots + d_{79} = 0 + d_1 + d_2 + \dots + d_{79} = d_1 + d_2 + \dots + d_{79} = 0.$$

Важный вывод: исследование исходной последовательности сведено к исследованию убывающей последовательности целых чисел

$$d_1; d_2; ...; d_{79}$$

такой, что $d_1 + d_2 + ... + d_{79} = 0$.

а) Если предположить, что $a_2 < 0$, то разность d_1 второго и первого членов исходной последовательности отрицательна, но тогда и все остальные разности тоже отрицательны. Следовательно, каждый следующий член этой последовательности меньше предыдущего и поэтому все они отрицательны. Тогда последний член исходной последовательности будет меньше нуля. Получили противоречие.

Таким образом, ответ на первый пункт задачи «Нет». (1 балл)

б) Заметим, что

$$\begin{aligned} d_1 + (d_1 - 1) + \dots + (d_1 - 78) &\geq d_1 + d_2 + \dots + d_{79} = 0; \\ \frac{d_1 + (d_1 - 78)}{2} \cdot 80 &\geq 0; \quad d_1 \geq 39. \end{aligned}$$

Так как $a_2 = d_1$, то $a_2 \ge 39$.

Ответ на второй пункт задачи «Нет». (2 балла)

в) Приведем пример последовательности, для которой $a_2 = d_1 = 39$.

$$\{d_1;\ d_2;\ ...;\ d_{79}\}=\{39,38,37,\ldots,-39\};$$
 $\{a_1;\ a_2;\ldots;\ a_{80}\}=\{0;39,77,114,\ldots\}.$ (1 балл)

Ответ: а) нет, б) нет, в) 39.